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NATICONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO, 1479

BOUNDARY—LAYER MOMENTUM EQUATIONS
FOR THREE-DIMENSIONAL FLOW

By Neal Tetervin
SUMMARY

Boundary-layer momentum equations for the three-~dimensional flow
of a fluid with veriable density and viscosity are presented in a
form similay to the momentum equatlon for two--dimensional flow., The
momentum equations can be reduced to the forms of the three—
dimensional momentum eguetions that have been given recently by
Prandtl for a Fluid with constant density and vlscosity. When the
flow becomes two-dimensional, the momentum equation first given by
won Kéimédn results, For flow in a convergent or divergent channel
the equations reduce to the equations previously given by A. Kehl
for e fluld with constant density and viscoslity.

INTRODUCTION

Recently there has ‘been an -awakening of interest in the problem
of three—-dimensional boundary-layer flow; that is, flow where the
veloality and static pressure outside the boundery layer are funcitions
of two independent variables. In the usual two-dimensional boundary—
layer thecry fox flow over slightly curved surfaces, or over bodies
' of revolution, the veloolty and static pressure outside the boundary
layer ave functions of only one independent varieble,

A case of three—dimensional boundary-layer flow that is of
particular intersst.at present is the flow over sweptback wings for
which the outer flow velocity and pressure gradlent have e ocmponent
in the direction of the chord and a component abt right a.ngles to the
chord end in the d.irec’cion of the span.

Except for a paper by Prandtl '(reference 1) that recently
became avalleble, no literature concerned with the theoretical aspect
of the problem is known. After giving a form of the boundary—-layer
momentum eguation for the three—dimensional flow of sn incompressible
fluid with constant viscosity, Prendtl dlscusses a progrem based on
the momentum equation. The progrem has as its goal the formulation of
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a method for computing the characteristics of laminar boundery layers
in three dimensions that is similgy to the Pohlhausen method for
two—dimensional flow {reference 2} and a method for determining the
characteristics of durbulent.boundery layers that is based on
experimental data.

The camputing methods for both laminar and turbunlent boundary
leyers in three—dimensions should be able to use a boundary—layer
momentum equation in the same manner that approximate methods for
computing laminar end turbulent boundary-—leyer characteristics in
two—dimensional flow (reference 2, 3, and 4) use the von Kémmén
momentum equation (reference 5). The momentum equation, in additlon
to gexrving as a basis for aspproximate mothods, should also suggest
parameters o be constructed from experimental d.ata for three~
dimensional bmmda;rynlayer £lovws .

Because of the interest ’Ln ‘the boundazy-—layer problem for three—
dimensional flow at large ag well as at emall Mach numbers, 1t |
seemed. desirable to present B boundary-leyer momentum eguation in
three dimensions for a fluld having varieble density end viscosity
in a.form analagous to the momentum equation for two-dimensional flow.

SYMBOIS

P denslty

£ . - .coefficlent of viscoslty
% time '

P gtatic pressure

Xy¥s2 three mu‘bua.l..y perpendicular coordinates, Car’besian
system )

3] : nomingl 'bhicknass of boundax:y layer

7,3,k  unit vectors along X~y ¥ and z-8X0S, respettively

W, V,W components in the dlrectlons of x—, y—, and z-axes,
respeotlvely, of veloclty inslde boundary layer o

wl

resultant v,eléoify vect,o:c; (fu + v + =)
F body foroe vector per unlt mgisé' '(TFx + EFy + -EFZ)‘
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v

U5 Vg
v

Vs

PS .

%
Bx

del operator (I EBE + 3 8%' + Egaz)

| vorticity vector l%@—? - §§) * 3@% N g_%):E@% B g?)]

components In dlrection of x- and y-axes, respestively,
of velocity at ouber edge of boundary layer

resultant veloolty Inslde boundary leyer
resultant veloclty at edge of boundary layer

density at edge of boundary layer

boundary-layer dlsplecement thickness camposed of veloalty

S]
components in xwdirection 1~ B2
PBUS

‘boundary—layer momen'bmn thickness, composed of wvelocity

5
components in x«—d:lrection 1l - ——>
0 98"'8

boundery-layer displacement thickness camposed of velocity
N 5 '

ccmponents in yedirection 1 - LY
0 PavE

3
_pv_

boundary—layer momentum thickness gamposed of veloc:wS
o pﬁva

components in ,v»d.irection

8.
f =Lu S az
0 Pa"s 5
5]
LA R B
o PBYB U3

angle between direction of projection on X~y plane of
resultant velocity inside bounda.xy layer and x-axis

]
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angle between : dlrectidn of projection on x-y plane of
resultant velocity at outer edge of boundary layer and
*-axls

bQundary—ia&er displacament thickness for o indspopdont

. A .
's / \
of 2 /'d { - \dz
\ o \ pﬁvﬁ /

boundary—layer momentum thickness for o independent of =z
, .

resultant surface shear acting on fluid

, component in X~direction of surface shsar acting on fluid

component in Y-direction of surface shear acting on fluid

distance measured along direction of flow in cases of
two-dimensional flow

radiasl dlsbance from origin, alwaye positive (;[?{ é‘)

length of diffuser messured from fictitlous interseotion
of streamllnes

constant greater than all valuss of rl, for flow in

converging chennel

stagnation pressure, Incampressible. flow
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h constent length greeter then' 6, quantlties with subseript B

are equal to guantities with subsoxrdpt ©
Subscripta: ;
o] at surface of plate _
1 avantities for flow iﬁ converging cha.nnel

DERIVATTON
Boundary-Leyer Momentum Egquations for Threé—&)ﬁéns’ibnal ‘Flow

The fundamental equations of flow (refercnce 6) ave the
equation of continuity whioch may be written as

WaFei=o .

and the equation of moticn of a fluid with varisble density and
viscosity which may be written as elther :

P v fJ #® + 7
P ];% = oF —Up + u(€7.°€:)_71_. + %5 _(5_."_-71') + 2(Unv)q
o 7
+Tu X - —( DT u (2)

or, by using the vector identity

as

P z—% = oF = 7p — 17 X E.) + %45(5'3) .+ 2(%*?)3

+%uxXF - §(§-W n : (3)
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‘Because the flow is asswfme.d;.:bqu'l_ie lsl,.t"eady. '
2.,
i T
and hence the equation ‘of‘ oor;;bipui:by ba_gpmes_. .
Vel =0 ()
and the adaelsration vector betomes

i g N
Dt 4t (?vq

In the rectangular system of ccordinates shown in figure 1 and used
id the subsequent analysis, the acceleration vector isg

..a:g:.;'I( ax By+ Eh’“\+:j( +v—-y+wgzv>

+ Efo ¥ 4y OX Bw)
ax a'y 3z

) ) -

o 2% ok a%)+5éa2w 22 2% Bau)
Jyox ayE az2 Bzax 2Dy az axe_ 33y

S E2% 2% 3% , 3%
axaz dx°  dy2 3')?52/'

Y
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5.7 = IR 4 Bv L o

ved = ax 3
5G3) =1(% , ) 2%
32 axay ¥ e yadc ayaz

e Pa , 3% Py
+ k RS 1
dzdx E)ya‘z':" 322

_‘<:ll

=T QO 4 T,
3x a:r

?.wg'

v()__alla() aua() op.a()
Bx ox ayay az Bz

(S V)q -7 (au du . dwu . du au> (au OV , dwdv  dudv
) 0X ox oy ¥y - az oz dx 3x ay oy az Sz

+-E -a-l‘i-sl{+-a-g.ai+.a_§a_‘f_
0X X Oy oY 0oz oz

5»><3=I-'§a@.1_§3>_~§3 du _ dw
o [OY X By/ 3z \3z dx

+3'-3-E ~-9¥\ _ 21 /¥ _gu
3z ay T oz T ox \3x T3y

e

: izéu_y.._.a_wz du (v _ v
I A _ax> 5 oy - 5?)
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— e o ) ) a '
(V'Q)W=Tgﬁ<%+g§+%’>+3%§<§: I—S}V--}-ag)

By use of the foregoing relations the comyonents of the equation of
motion becomes

Along the x—axls:

QB ., pom, odu §;_>__ 3% aﬁu__" aaw)
P\" 8 “’ay‘“-"’a_z)“pF* F\6%x T av2 T 82 T 35w

L h, (3%, 3% . 3%
T3M\SEE T 5By T ims

sof2udn, dudu dwdu), oAy _du
"\ Jx Ox Byay azaz ay 3x oy

_duow_aw\ _2amfdu
az@z, ar) -35x<ax &Y a) (5)
Along the y-exis:

Bv v ey aPl 3% _ 3% 2% 3%y )
ev ov Y Y = oFy o o -
"(“ x> Tyt > PV T T by T a2 T ax? T Sy,

T4
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Along the z—axis: _ o

pr o oar

owfodw, ) .o o0 . (3% 3% 3214' 2\ b

P (11. - SR g:; + W BZ!) DF a 09Xz axg ayaz> : "
CE T e 82w

+-—u asz"'ayaz 3z2

ow ow . Ou oW , ou 9y Qu._._u .1
+23x5? ayb:y' azaz T oz \oz

Q/

' ~dufdw _ v QQEL é.. -1 (7)
oy \dy oz 3 dz \ox * 37 a
; . i ] T, ,
Tn common with the boundary--layer theory for two-a.imensioz;al
flow (reference 7) the quantities u, v, %, ¥ arec assumed to be.of
the order unity, the quantities w and. z. of the order & where ‘6
is small, and ufo of the order of 82, It is also assumed that
the radil of curvature of the plate and of . the streemlines in the .

directlon of the z-exis are large compared with the thickness Qf the ;
boundary, layer. o

Then, when all quantities of the order of & to the first or.
higher powers are neglected, the equations of motion, oguations (5} y {6},
and {7}, respectively, beccmes _

_Along the x—axis:

o 2w |, dpdu_ dudu :
p( ax+\?'ay-}-'wg- pFy — +“32 ESESE—S-Z-&' . - {8

Alongtheg;';axis:

FiA Bv ) 32v 3u 3V due ov . e
P( Yy +W§— D 33_'-!-&5;2'1'2 > 8z S5z 5% N (9)

Along the z—axis:

0 = pF, - gg . (10)
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cals

I;E‘ 1% is now assumed that 'bhe body forces are nagll@bla_ com;;areﬂ with the pressure end
viscous forces in equaticons (8) and (9) and that the body force in equation (10) produces a
negligibls statlc pressure gradient across.tlie bounmisry la:rer, tnan equations (8), (93,

emd, (10) become the boundery-layer "equations: ﬁ_ch a:'e‘

Along the x-eacis:"

(a_”a.wi
Az

. ax az %

Alo:ug the y-axis:

pfué}z+v-_-a—!+w
for:s oy

Yo 2,2/,
/ \

& Lo
¥ {cv
¢y
N

14

O«‘

Along the z—ax_is:‘

_ op
O’B'En

L2720

A

The. 'bomd.aa:y—layar mementun equation in the direction of ihe xaxis is o'bba.inﬁd. by
‘Integreting equation {11) in the z-direotion and by using the equation of aonumuw,

o7 = 208 %_ ¥ _ o, :
equation (%), Wpq = % * + 35 = 0. The result is:

'. 5. a '
3 PE 5 A {"6 3 r . 3 J 5 22 7 au
3 dz—uagﬁj PRt |, P Ty ) T T e T helsE
vo :

{(12)

(12)

SLYT o8 NI YOVH




The corresponding boundary-layer mamentum equation in the direction of the y-axis is:

9 2 ) " d )

Sm— dz - ey — K -

37 pv & 57 A pv 4z 3 5% puv 4z V8 5% pu dz 8 ( )
0 0 0

I£ it 15 essumed that the viscous otresses are negligible ou’caid.e the boundery leyer,”

muad Ll Pl el e ol L8 ke
Ll Lig LOULLOWILLS LUOLTL LI

t%_
=
fus

&

W
(]
(=]
P "~
i f=
T
& fo
™
\—b’
&

3
E
i
O.:
N
1
\5'/

PEVs ug

(1)

T *ON NI VIOVN

6Ly
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are introduced, eguation (13) may be wriltten ast

apsua XX oUg « % Bps"au Oyx Oy o # ‘
+ pgit By £+ pgv : 13a

T ‘3553:; e85 By =Tox (132)

whers the component, along the x-exis, of the squation of motion
for invisold flow with -a—g:)- =0 . i

3 dug 3p
e

has been used outside the boundary layer.

If it iz again sagumed that the viscous stresses aro negligible
outside the boundary layer, and the notations

Ns
2] = ey ( ——-l- az . -
yy ' LO Pavﬁ v8/ -.‘_. .- . .
M
sy* = 3~ -%L
o)
Jo 8’5 12
Toy © “o(%f

D
n

5 .
Ly L X
¥ fo PEUs ’ Vo o

are introduced, sgquation (1) may be written as:

2
3psVs"6 Ovy o *  Spgiaved Ovg . : -
——.—-8;—3;! L psva -a-—y- ay o -——--é-:-c——ﬂ & paua "E-JE SE = Toy (l‘h‘a)
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where the camponent, along the y—axis, of the equation of motion for imviscid flow

&L4T- *oN NI VDOVN

witn 8L) <o
oz
vy evg _ - &p
. e + _—pam
3 PEYD a pav 5 ay ay
hap been used outside the boundery leyer.
Tf the terms are separated so that each derivative comtains only one term,
saua tinrnl_:' ,'I".‘n\ =-r-.ﬂ {1!{"‘ mny 1-\n Trz-ltl-uui* ags
[~ i j
/. ' -+ 1 - '
o u 1 3p~ L) - ‘\u
?..E.Feﬁkwé_é,,_h #3820 g | Bra 00, 19% , 1 dp8 =..Tﬂg (13)
ox ‘\ Ug OX P 3T / up | 3y ug 3y vydy Py 9Y, plly

30 2 3 a-' 2e | (E;i*l'a 3 \ ‘
T‘fwﬂ(&‘:_:é*.iﬁ\ (2 B\t a e, a e ) Sy

Bquetions (132) and (1k) or (13b) snd (14b) ave the three-dimensional boundary—la;yer nemertm
f =lv onr

amatdona Foar crmmrmeand Ty nvnr 8 Tiat n'n 1l
equationg IQor O

ke S gk Bk ke A u-\.r — e o b T

L)
¢
]
d

P

£T




Reductlon of the Equations (13) and (14) to the

Fquations Given by Prandtl (Reference 1)

The equations (13) and (14) can be reduced to the mmmentum equatiors given by Prandtl
(reference 1) by making certain substitutions. The firsy substitution 1s to change the
upper }imit of the integrmls from 3 to, h, where 'k 1s & convtent length everywhere
greater than .5, by using ©T ' T

- ' . rar A\ A ' hr \oa. rh: v oA
. o {(Jjaa= ) (Jaz—- ¢ {]
| Jo Jo Js
-
Equation (13) then becames
Ph Ph /:». .Ph ~ rh

':.x ‘a o - ' - fa...
é\] pucd_z+%:_\l D“de'uﬁéj pudz-z-g-’}-_-J ov dz “95%(h‘5)§'xﬁ
Y T MO : - Jo 0 '

- - -

- pgvs (b - B) %ﬁ +h g% + (8 ~n) g& = - po(g-‘zi)o (336)

When the camponent, ajong the x~exis, of the equation of motion for inviscid flow

=0

oz

i

6LYT *oN ML YOVN
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-
-

is used for. z > B, equa'bioé': (13¢) becomes
N .. fn

9 h uad.z'+-a-'- [ uv dz ~ u
= | ° & P 3

) =
z Qs
=
+
g
oy
&
+
[~3
1154
]
|
=
0
E1E4
S
Qo
? L9
8
* 64T oM Kk OVN

Jo F o Jo : :

When use i@ made of the squation of oqntimlity (equation (h;), equation (134) may be written ,‘{

. L. et
ﬁ: i .. -' ) : LY .. ‘:
- ", . - . ) - .
- - . ' . N v, T

"h

b . :‘,-.".
. 3 w? " . N hap 3‘1\ (138)
: = + 35 P UsOh¥h ‘5" S i

ce Jo . JO ::- N :

(3

1A e
Sl g

T£ the denai‘by end viaaosi‘by of the fluid are now asmd to be uonstant, ecmation (13e) &=
« beoaues _ _ s .

> fo Ry

B

; h ph T ; ’ : Ian.: ' .I‘! "?,.- :'~|
T -

p,:va—x‘ T D.Ed.z-l-a-y— . uvdz.+u5v1} -l-hax”‘ T ox . (le)

b
F

t

]

i
o
L9
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In order: to obtain equation (2) of reference 1, the aasumption
of constent density and viaoosity is mad.e in equation. (13a) and

op
S5 is replaced by

3p oug AV
5% O PeWd 57 T P8V 3T

because Bernoullil's equation

| ’ B '
‘ 0 P E Ry T (“52 * "82>

x

1e used Pfor the flow for gz > 5 Equation (13d) can then be
expreossed 1ln 'bhe form _

1?3‘.: (uauu)<g§+§x>dz+ (ug-é-f-—~ %)dz
QO - Jo
fth
Vs i
N , ("s 'g;ffay)dz , (13g)

If use is now made of the fact that the spplicability of Bermounllils
squation for % » 8 Implies that the vorticlity is zere for =z > §,

u v
or %f - %f- =0 for z % 8, then equation (138) beccmes

h -
Tox aug, ou
— ng — 1) -—-—--:--- dz + UR —=— = U e |32
P (5 ( (5ax C ox

0

+

h
. ou :
( Y vBu az
0

which is equation (2).of reference 1.
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By a similar process equation (14) can be reduced to the
momentim equation for the y—dirsction given by Prandti.

Reduction of Equations (13b) and (14b) to the

Two-Dimensional Moméntum Equaetion

Tt 1s of imterest to show that eguations (13b) and (1lb)
veduce to the two-dimensional momentum equation when the flow

beocmes essentially two dimensional, For this reductlion, the

definitions £or Oxy, 6yys Ouyxs Orys 8, and ay""‘ are written

as follows:

¥

. o | ot
.ew_ pv sin o - sin o az
0 Pg¥s Bl o

5 _
‘6. = p¥ sin a (l—- Y cos d’.)dz

o pg¥s 8in ag Vg cos ag
s}
ny - pV o8 & 1= Veln o az
0 pg¥s 0OS ag . Va si_n g
_ 5
. 5
By = 1 _Praosa ,,
Pyl GOB dg
. O . ‘ .

. 5,
v | (2w
o a4
. o P5’ 5 B



where (see fig. 2) b

If o 18 independent of 2z, them 6 . =6__=06__ =6_ =08 and §
Bquation (13b) then beccmss

% (Es2® 1%\ Tole m.1d 1% 3 Y| 1o
-~ + & ok e | T 1 O T b e - e = ——
3 k ug 3_’%’- pg OX ) ug {0y ( Ys OF V3 OF  pj 9Y ) Pg15 .
or -
36 . V838 H+20U 10993 V5H4190% 19 Vs 1 9ep T ox
§—+-—§-+9 -—-—a—;+——-§-—+-—— Tt e e e Dy
= 3 ¥ ) PEOX U Wy OF Uy 0¥  uj pd OF Py

Inagmuch as vy = Vg #in o, ug = Vg cos a, Tor =T €08 o, amd if o I8 mads independent
of x end y as well as of z, it foilows thet:

6LAT "ON NI YOVl




=Yz} 24 I /‘n‘.r.gava B4 10V 1 OVg .
=goB a+=-ging+ 6 w00 Lt~ flnde+F—=8ina
ax VS X VE vsa .

.

Py pgy OF Ps¥s
Hote thab
3 ) cos a,+a( ) gin a‘=__d( )
x| ' ds
and ther_'efore
a9 E+2%s 1 9pg To

{15)

Equation (15) is the boundary-layer momentum equation for two-dimensiopal qqn-preésible flow

{reterence 4).
equation {15) when the flow ia two dimensional.

By the same method it can be shown that equa,tion (14b) elso reduses to

CL4T *ON NI VOVN

6T
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Reduction of Equations (13b) and (14b) to the Boundary-

Layer Momentum Equation for Radilal Flow

When the flow over s flab or slightly ourved plate is such
thet all the veloclity vectors point awey from a cammon line
perpendicular to the plate, the flow is called radial flow outward
from the qrigin. When all the veloolty veotors point toward a
camnon line perpendicular to the plate ,the flow is called radial flow
inwerd to the origin. For such flowe the momentum equetions (13b)
and (14b) reduce to a simple form.

In oxder to obtain the boundary-layer momentvm equation for
radial flow, the x-axis is taken along one of the radial lines and
the y-axis is taken at yight angles to it (fig. 3). Egquation (13b)
or (1hb) is used together with,

2y =VB co8 o

Vg = VS. sin «

In this case o = a{x,y) and, therefore,

o]
=
=i
L2
il
HIK BK

3y  r
Bcc:__sigq,
ox T
r= x2+y2

When these relations are weed, the expressioms for the velocity
derivetives become:



NACA TN No., k79 ' o1

va-u—a- ava (.:6+V5 -1—%—5 I

=B e 003
ox ox . r
dug Ny '
__§_=___§oosm_v55inmcoscc
oy oy T

R e S

?—Y—B-zavasinm-{-v$£gﬁ
: g r

Substituting these expressions into equations ('L;b) or ( 14b) and

collecting terms resulte in _ x
. ne

av €pn T
.g‘.e..l.e HI-E._Q .&..—.Eq..].' =".'-°""E (16)

with » > 0, where dr and. Vg &ave positive in the direotlon away

fram the origin, Equation (16) is the boundary-layer momentum
equatlion for radlal flow.

When the flow is radlal and into the origin,it is sametimes
nore convenlent to write the momentum equation in a form in which
‘the velocity is considered positive when direoted toward tho origin
and in which the radial distance increasses in a positive sense
toward the origin, This form may be obtainsd by making the
_ substitutlions , - :

‘HE=H
6 =61
Vg = Vs,
P = 0By
LT To = "Toy
- To=Trg -~ ry
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in equation (16). The result is then,

ao;  {E +2Ys dop - T |
_...l.]. 61 oo .........1.1.--.;.!'._ l-]. L. = oL (l'()
dry Val dry P3q dry vy =~ ¥, ~pSV51

vwhere Ty > Iy

Comparison with Xehl's Equations for Flows in

Converging and Diverging Charmels

It may be noted that squation (16) is also the mementum
equation for the boundary layer on the part of the wall of s two-
dimensional diverging ohammel over which the Tlow is radial.
Equation (16) is thus applicable to the flow shown in figure U
when the origin of the coordinate syetem of figure 3 is placed
at the point where the radially directed shreamlines of figure L
would inbtersect if projected. In order to obtairn ths equation
given by Kehl (reference 8), it is assumed that the donslty is
oonstant and that the dimtance r ig messured along the center
line (fig. 4). Eguation (16) then becomes

0, o[Ee2lls, 1) . To
dx ug L dx X PBUS

which is the equation éivén by Kehl for the flow in a two~dimensional
diverging ohannsl.

Similarly, eguation (17) is also the momentum equation for the
boundary layer on the part of a wall of a two-dimensional converglng
channel over which the flow is radial. The flow shown in figure 5
mey be then described by equation (17) with the use of the coordinstes
¥o and ¥r3, a8 shown in figure 5 ., If 1t is assumed that the

density is oonstant and 1f the distense r; is measured along the
center line, equation (17) beocomes

ae Hy + 2 du ' 1 To
5;; + 07 _l d??l + = L 5
2 wey & mym ol onug

which is the equation by Xshl for flow in a converging channel.
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CONCIUSIONS

Three~dimensional boundary-layer mcmentixi equationé for a
fluld with variable density end viscosity are presented in a Porm
similar to the momentum equation for two-dimensionsl flow, The
momentum equations can be reduced to the forms of the three—
dimensional momentum aqua.tione that have been glven recently by
Prandtl-for e fluld with'constant. denslty end viscosity. When the
flow beoomes two dimensional, the momentum egquation first given by
von Karmén rvesults. For flow in & convergent or divergent chamnel
the equations red.uce td the equations previously given by A, Kehl
‘for ‘& £luid with constant density and viscosity.

Langley Memorial Aeronautical Isboratory
National Advisory Committee for Aeronsutics

Langley Field, Va., Sep‘bembea. 3, 1947
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Figure 1.- Coordinate system.

4
Xy¥s2
\V
Iy
T\, w y
1
1 _V_»
/\\: s

B&Q-ﬂl i i

S,

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 2.~ Velocity components.
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Figure 3.- Coordinate system for radial flow.
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Figure l.- Goordinate system for flow in a diverging channel.
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Figure 5.- Coordinate system for flow in a converging channel.
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